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5.4.2 Pause

Now pause, and ask if there are some ways to apply what we have done up
to now to real astrophysical objects.

• The Eddington luminosity is derived with the Thomson cross section,
with the thought that it describes the smallest probability of inter-
action between matter and radiation. But the Klein–Nishina cross
section can be even smaller, as long as the source of radiation emits
at high energy. What are the consequences? If you have forgotten the
definition of the Eddington luminosity, here it is:

LEdd =
4πGMmpc

σT
= 1.3× 1038

M

M!
erg s−1 (5.15)

• In Nova Muscae, some years ago a (transient) annihilation line was
detected, together with another feature (line–like) at 200 keV. What
can this feature be?

• It seems that high energy radiation can suffer less scattering and there-
fore can propagate more freely through the universe. Is that true? Can
you think to other processes that can kill high energy photons in space?

• Suppose to have an astrophysical source of radiation very powerful
above say – 100 MeV. Assume that at some distance there is a very
efficient “reflector” (i.e. free electrons) and that you can see the scat-
tered radiation. Can you guess the spectrum you receive? Does it
contain some sort of “pile–up” or not? Will this depend upon the
scattering angle?

5.5 Inverse Compton scattering

When the electron is not at rest, but has an energy greater that the typical
photon energy, there can be a transfer of energy from the electron to the
photon. This process is called inverse Compton to distinguish it from the
direct Compton scattering, in which the electron is at rest, and it is the
photon to give part of its energy to the electron.

We have two regimes, that are called the Thomson and theKlein–Nishina
regimes. The difference between them is the following: we go in the frame
where the electron is at rest, and in that frame we calculate the energy of the
incoming photon. If the latter is smaller than mec2 we are in the Thomson
regime. In this case the recoil of the electron, even if it always exists, is
small, and can be neglected. In the opposite case (photon energies larger
than mec2), we are in the Klein–Nishina one, and we cannot neglect the
recoil. As we shall see, in both regimes the typical photon gain energy, even
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if there will always be some arrangements of angles for which the scattered
photon looses part of its energy.

5.5.1 Thomson regime

Perhaps, a better name should be “inverse Thomson” scattering, as will
appear clear shortly.

5.5.2 Typical frequencies

In the frame K ′ comoving with the electron, the incoming photon energy is

x′ = xγ(1− β cosψ) (5.16)

where ψ is the angle between the electron velocity and the photon direction
(see Fig 5.5).

Figure 5.5: In the lab frame an electron is moving with velocity v. Its
velocity makes an angle ψ with an incoming photon of frequency ν. In the
frame where the electron is at rest, the photon is coming from the front,
with frequency ν ′, making an angle ψ′ with the direction of the velocity.

At first sight this is different from x′ = xδ derived in Chapter 3. But
notice that i) in this case the angle ψ is measured in the lab frame; ii) it is
not the same angle going into the definition of δ (i.e. in δ we use the angle
between the line of sight and the velocity of the emitter, i.e. θ′ = π − ψ′).



84 CHAPTER 5. COMPTON SCATTERING

Going to the rest frame of the electrons we should use (recalling Eq. 3.16
for the transformation of angles):

cosψ =
β + cosψ′

1 + β cosψ′
(5.17)

Substituting this into equation 5.16 we have

x′ =
x

γ(1 + β cosψ′)
(5.18)

Finally, consider that cos θ′ = cos(π − ψ′) = − cosψ′, validating x′ = xδ.
If x′ # 1, we are in the Thomson regime. In the rest frame of the

electron the scattered photon will have the same energy x′1 as before the
scattering, independent of the scattering angle. Then

x′1 = x′ (5.19)

This photon will be scattered at an angle ψ′
1 with respect to the electron

velocity. The pattern of the scattered radiation will follow the pattern of
the cross section (i.e. a peanut). Think to the scattering in the comoving
frame as a re-isotropization process: even if the incoming photons are all
coming from the same direction, after the scattering they are distributed
quasi–isotropically. Going back to K the observer sees

x1 = x′1γ(1 + β cosψ′
1) (5.20)

Recalling again Eq. 3.16, for the transformation of angles:

cosψ′
1 =

cosψ1 − β

1− β cosψ1
(5.21)

we arrive to the final formula:

x1 = x
1− β cosψ

1− β cosψ1
(5.22)

Now all quantities are calculated in the lab–frame.
Let us see the minimum and maximum energies. The maximum is when

ψ = π (head on collision), and when ψ1 = 0 (the photon is scattered along
the electron velocity vector). In these head–on collisions:

x1 = x
1 + β

1− β
= γ2(1 + β)2x → 4γ2x; head− on (5.23)

where the last step is valid if γ % 1. The other extreme is for ψ1 = π and
ψ = 0. In this case the incoming photon “comes from behind” and bounces
back. In these “tail–on” collisions:

x1 = x
1− β

1 + β
=

x

γ2(1 + β)2
→

x

4γ2
; tail− on (5.24)
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Figure 5.6: Maximum and minimum scattered frequencies. The maximum
occurs for head-on collisions, the minimum for tail–on ones. These two
frequencies are one the inverse of the other.

where again the last step is valid if γ % 1. Another typical angle is sinψ1 =
1/γ, corresponding to cosψ1 = β. This corresponds to the aperture angle
of the beaming cone. For this angle:

x1 =
1− β cosψ

1− β2
x = γ2(1− β cosψ)x; beaming cone (5.25)

which becomes x1 = x/(1 + β) for ψ = 0, x1 = γ2x for ψ = π/2 and
x1 = γ2(1 + β)x for ψ = π.

For an isotropic distribution of incident photons and for γ % 1 the
average photon energy after scattering is (see Eq. 5.47):

〈x1〉 =
4

3
γ2x (5.26)

Total loss rate

We can simply calculate the rate of scatterings per electron considering all
quantities in the lab–frame. Let n(ε) be the density of photons of energy
ε = hν, v the electron velocity and ψ the angle between the electron velocity
and the incoming photon. For mono–directional photon distributions, we
have:

dN

dt
=

∫

σTvreln(ε)dε (5.27)
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vrel = c−v cosψ is the relative velocity between the electron and the incom-
ing photons. We then have

dN

dt
=

∫

σTc(1− β cosψ)n(ε)dε (5.28)

Note that the rate of scatterings in the lab frame, when the electron and/or
photon are anisotropically distributed, can be described by an effective cross
section σeff ≡

∫

σT(1 − β cosψ)dΩ/4π. For photons and electrons moving
in the same direction the scattering rate (hence, the effective optical depth)
can be greatly reduced.

The power contained in the scattered radiation is then

dEγ

dt
=

ε1dN

dt
= σTc

∫

(1− β cosψ)2

1− β cosψ1
εn(ε)dε (5.29)

Independently of the incoming photon angular distribution, the average
value of 1 − β cosψ1 can be calculated recalling that, in the rest frame of
the electron, the scattering has a backward–forward symmetry, and there-
fore 〈cosψ′

1〉 = π/2. The average value of cosψ1 is then β, leading to
〈1− β cosψ1〉 = 1/γ2. We therefore obtain

dEγ

dt
= σTcγ

2
∫

(1− β cosψ)2εn(ε)dε (5.30)

If the incoming photons are isotropically distributed, we can average out
(1−β cosψ)2 over the solid angle, obtaining 1+β2/3. The power produced
is then

dEγ

dt
= σTcγ

2

(

1 +
β2

3

)

Ur (5.31)

where

Ur =

∫

εn(ε)dε (5.32)

is the energy density of the radiation before scattering. This is the power
contained in the scattered radiation. To calculate the energy loss rate of the
electron, we have to subtract the initial power of the radiation eventually
scattered

Pc(γ) ≡
dEe

dt
=

dEγ

dt
− σTcUr =

4

3
σTcγ

2β2Ur (5.33)

A simple way to remember Eq. 5.33 is:

Pc(γ) =

(

# of collisions

sec

)

(average phot. energy after scatt.)

=

(

σTc
Ur

〈hν〉

) (

4

3
〈hν〉γ2

)

(5.34)

Note the similarity with the synchrotron energy loss. The two energy loss
rates are identical, once the radiation energy density is replaced by the
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magnetic energy density UB. Therefore, if relativistic electrons are in a
region with some radiation and magnetic energy densities, they will emit by
both the synchrotron and the Inverse Compton scattering processes. The
ratio of the two luminosities will be

Lsyn

LIC
=

Psyn

Pc
=

UB

Ur
(5.35)

where we have set dEIC/dt = dEe/dt. This is true unless one of the two
processes is inhibited for some reason. For instance:

• At (relatively) low energies, electrons could emit and absorb synchrotron
radiation, so the synchrotron cooling is compensated by the heating
due to the absorption process.

• At high energies, electrons could scatter in the Klein–Nishina regime:
in this case, since the cross section is smaller, they will do less scat-
terings, and cool less.

Figure 5.7: In the center of a semi–sphere (the “bowl”) we have relativistic
electrons going down and going up, all with the same γ. Since the seed
photon distribution is anisotropic, so is the scattered radiation and power.
The losses of the electron going down are 7 times larger than those of the
electron going up (if γ % 1). Since almost all the radiation is produced
along the velocity vector of the electrons, also the downward radiation is 7
times more powerful than the upward radiation.

But let us go back to Eq. 5.30, that is the starting point when dealing
with anisotropic seed photon distributions. Think for instance to an accre-
tion disk as the producer of the seed photons for scattering, and some cloud
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of relativistic electrons above the disk. If the cloud is not that distant, and
it is small with respect to the disk size, then this case is completely equal to
the case of having a little cloud of relativistic electrons located at the center
of a semi–sphere. That is, we have the “bowl” case illustrated in Fig 5.7.
Just for fun, let us calculate the total power emitted by an electron going
“up” and by its brother (i.e. it has the same γ) going down. Using Eq. 5.30
we have:

Pdown

Pup
=

∫ 0
−1(1− βµ)2dµ
∫ 1
0 (1− βµ)2dµ

=
1 + β + β2/3

1− β + β2/3
→ 7 (5.36)

where µ ≡ cosψ and the last step assumes β → 1. Since almost all the
radiation is produced along the velocity vector of the electrons, also the
downward radiation is more powerful than the upward radiation (i.e. 7
times more powerful for γ % 1). What happens if the cloud of electrons
is located at some height above the bowl? Will the Pdown/Pup be more or
less?

5.5.3 Cooling time and compactness

The cooling time due to the inverse Compton process is

tIC =
E

dEe/dt
=

3γmec2

4σTcγ2β2Ur
∼

3mec2

4σTcγUr
; γε # mec

2 (5.37)

This equation offers the opportunity to introduce an important quantity,
namely the compactness of an astrophysical source, that is essentially the
luminosity L over the size R ratio. Consider in fact how Ur and L are related:

Ur =
L

4πR2c
(5.38)

Although this relation is almost universally used, there are subtleties. It
is surely valid if we measured Ur outside the source, at a distance R from
its center. In this case 4πR2c is simply the volume of the shell crossed by
the source radiation in one second. But if we are inside an homogeneous,
spherical transparent source, a better way to calculate Ur is to think to
the average time needed to the typical photon to exit the source. This is
tesc = 3R/(4c). It is less than R/c because the typical photon is not born
at the center (there is more volume close to the surface). If V = (4π/3)R3

is the volume, we can write:

Ur =
L

V
tesc =

3L

4πR3

3R

4c
=

9L

16πR2c
(5.39)

This is greater than Eq. 5.38 by a factor 9/4. Anyway, let us be conventional
and insert Eq. 5.38 in Eq. 5.37:

tIC =
3πmec2R2

σTγL
→

tIC
R/c

=
3π

γ

mec3R

σTL
≡

3π

γ

1

*
(5.40)
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where the dimensionless compactness * is defined as

* =
σTL

mec3R
(5.41)

For * close or larger than unity, we have that even low energy electrons cool
by the Inverse Compton process in less than a light crossing time R/c.

There is another reason why * is important, related to the fact that
it directly measures the optical depth (hence the probability to occur) of
the photon–photon collisions that lead to the creation of electron–positron
pairs. The compactness is one of the most important physical parameters
when studying high energy compact sources (X–ray binaries, AGNs and
Gamma Ray Bursts).

5.5.4 Single particle spectrum

As we did for the synchrotron spectrum, we will not repeat the exact deriva-
tion of the single particle spectrum, but we try to explain why the typical
frequency of the scattered photon is a factor γ2 larger than the frequency of
the incoming photon. Here are the steps to consider:

1. Assume that the relativistic electron travels in a region where there
is a radiation energy density Ur made by photons which we will take,
for simplicity, monochromatic, therefore all having a dimensionless
frequency x = hν/mec2.

2. In the frame where the electron is at rest, half of the photons appear
to come from the front, within an angle 1/γ.

3. The typical frequency of these photons is x′ ∼ γx (it is twice that for
photons coming exactly head on).

4. Assuming that we are in the Thomson regime means that i) x′ < 1; ii)
the cross section is the Thomson one; iii) the frequency of the scattered
photon is the same of the incoming one, i.e. x′1 = x′ ∼ γx, and iv)
the pattern of the scattered photons follows the angular dependence
of the cross section, therefore the “peanut”.

5. Independently of the initial photon direction, and therefore indepen-
dently of the frequencies seen by the electrons, all photons after scat-
terings are isotropized. This means that all observers (at any angle ψ′

1
in this frame see the same spectrum, and the same typical frequency.
Half of the photons are in the semi-sphere with ψ′

1 ≤ π/2.

6. Now we go back to the lab–frame. Those photons that had ψ′
1 ≤ π/2

now have ψ1 ≤ 1/γ. Their typical frequency if another factor γ greater
than what they had in the rest frame, therefore

x1 ∼ γ2x (5.42)
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This is the typical Inverse Compton frequency.

The exact derivation can be found e.g. in Rybicki & Lightman (1979)
and in Blumenthal & Gould (1970). We report here the final result, valid
for a monochromatic and isotropic seed photons distribution, characterized
by a specific intensity

I(x)

x
=

I0
x
δ(x − x0) (5.43)

Note that I(x)/x is the analog of the normal intensity, but it is associated
with the number of photons. If we have n electrons per cubic centimeter we
have:

εIC(x1) =
σTnI0(1 + β)

4γ2β2x0
FIC(x1) (5.44)

The function FIC contains all the frequency dependence:

FIC(x1) =
x1
x0

[

x1
x0

−
1

(1 + β)2γ2

]

;
1

(1 + β)2γ2
<

x1
x0

< 1

FIC(x1) =
x1
x0

[

1−
x1
x0

1

(1 + β)2γ2

]

; 1 <
x1
x0

< (1 + β)2γ2 (5.45)

The first line corresponds to downscattering: the scattered photon has less
energy than the incoming one. Note that in this case FIC(x1) ∝ x21. The
second line corresponds to upscattering: in this case FIC(x1) ∝ x1 except
for frequencies close to the maximum ones. The function FIC(x1) is shown
in Fig. 5.8 for different values of γ. The figure shows also the spectrum of
the photons contained in the beaming cone 1/γ: the corresponding power is
always 75% of the total.

The average frequency of FIC(x1) is

〈x1〉 = 2γ2x0; energy spectrum (5.46)

This is the average frequency of the energy spectrum. We sometimes want
to know the average energy of the photons, i.e. we have to calculate the
average frequency of the photon spectrum FIC(x1)/x1. This is:

〈x1〉 =
4

3
γ2x0; photon spectrum (5.47)

5.6 Emission from many electrons

We have seen that the emission spectrum from a single particle is peaked,
and the typical frequency is boosted by a factor γ2. This is equal to the
synchrotron case. Therefore we can derive the Inverse Compton emissiv-
ity as we did for the synchrotron one. Again, assume a power–law energy
distribution for the relativistic electrons:

N(γ) = Kγ−p = N(E)
dE

dγ
; γmin < γ < γmax (5.48)
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Figure 5.8: Spectrum emitted by the Inverse Compton process by electrons
of different γ (as labeled) scattering an isotropic monochromatic radiation
field of dimensionless frequency x0. The dashed line corresponds to the spec-
trum emitted within the 1/γ beming cone: it always contains the 75% of the
total power, for any γ. For x1 < x0 we have downscattering, i.e. the photons
loose energy in the process. Note also the power law segments arising when
γ % 1: FIC(x1) ∝ x21 for the downscattering tail, and FIC(x1) ∝ x1 for the
upscattering segment.

and assume that it describes an isotropic distribution of electrons. For
simplicity, let us assume that the seed photons are isotropic and monochro-
matic, with frequency ν0 (we now pass to real frequencies, since we are
getting closer to the real world..). Since there is a strong link between the
scattered frequency νc and the electron energy that produced it, we can set:

νc =
4

3
γ2ν0 → γ =

(

3νc
4ν0

)1/2

→
∣

∣

∣

∣

dγ

dν

∣

∣

∣

∣

=
ν−1/2
c

2

(

3

4νo

)1/2

(5.49)

Now, repeating the argument we used for synchrotron emission, we can state
that the power lost by the electron of energy γmec2 within mec2dγ goes into
the radiation of frequency ν within dν. Since we will derive an emissivity
(i.e. erg cm−3 s−1 sterad−1 Hz−1) we must remember the 4π term (if the
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emission is isotropic). We can set:

εc(νc)dνc =
1

4π
mec

2Pc(γ)N(γ)dγ (5.50)

This leads to:

εc(νc) =
1

4π

(4/3)α

2
σTcK

Ur

ν0

(

νc
ν0

)−α

(5.51)

Again, a power law, as in the case of synchrotron emission by a power law
energy distribution. Again the same link between α and p:

α =
p− 1

2
(5.52)

Of course, this is not a coincidence: it is because both the Inverse Compton
and the synchrotron single electron spectra are peaked at a typical frequency
that is a factor γ2 greater than the starting one.

Eq. 5.51 becomes a little more clear if

• we express εc(νc) as a function of the photon energy hνc. Therefore
εc(hνc) = εc(νc)/h;

• we multiply and divide by the source radius R;

• we consider a proxy for the scattering optical depth of the relativistic
electrons setting τc ≡ σTKR.

Then we obtain:

εc(hνc) =
1

4π

(4/3)α

2

τc
R/c

Ur

hν0

(

νc
ν0

)−α

(5.53)

In this way: τc (for τc < 1) is the fraction of the seed photons Ur/hν0
undergoing scattering in a time R/c, and νc/ν0 ∼ γ2 is the average gain in
energy of the scattered photons.

5.6.1 Non monochromatic seed photons

It is time to consider the more realistic case in which the seed photons are
not monochromatic, but are distributed in frequency. This means that we
have to integrate Eq. 5.51 over the incoming photon frequencies. For clarity,
let us drop the subscript 0 in ν0. We have

εc(νc) =
1

4π

(4/3)α

2

τc
R/c

ν−α
c

∫ νmax

νmin

Ur(ν)

ν
ναdν (5.54)

where Ur(ν) [erg cm−3 Hz−1] is the specific radiation energy density at
the frequency ν. The only difficulty of this integral is to find the correct
limit of the integration, that, in general, depend on νc. Note also another
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interesting thing. We have just derived that if the same electron population
produces Inverse Compton and synchrotron emission, than the slopes of the
two spectra are the same. Therefore, when Ur(ν) is made by synchrotron
photons, then Ur(ν) ∝ ν−α. The result of the integral, in this case, will be
ln(νmax/νmin).

Figure 5.9: The ν–νc plane. The two diagonal lines delimit the regions of
the seed photons that can be used to give a given frequency νc.

Fig. 5.9 helps to understand what are the right νmax and νmin to use.
On the y–axis we have the frequencies of the seed photon distribution, which
extend between ν1 and ν2. On the x–axis we have the scattered frequencies,
which extend between νc,1 = (4/3)γ2minν1 and νc,4 = (4/3)γ2maxν1. The
diagonal lines are the functions

ν =
3νc
4γ2min

ν =
3νc

4γ2max
(5.55)

that tell us what are the appropriate ν that can give νc once we change γ.
There are three zones:

1. In zone (1), between νc,1 and νc,2 = (4/3)γ2minν2 the appropriate limits
of integration are:

νmin = ν1 νmax =
3νc
4γ2min

(5.56)
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2. In zone (2), between νc,2 and νc,3 = (4/3)γ2maxν1 the limits are:

νmin = ν1 νmax = ν2 (5.57)

3. In zone (3), between νc,3 and νc,4 = (4/3)γ2maxν2 the limits are:

νmin =
3νc

4γ2max
νmax = ν2 (5.58)

We see that only in zone (2) the limits of integration coincide with the exten-
sion in frequency of the seed photon distribution, and are therefore constant.
Therefore εc(νc) will be a power law of slope α only in the corresponding
frequency limits. Note also that for a broad range in [ν1; ν2] or a narrow
range in [γmin; γmax] we do not have a power law, since there is no νc for
which the limits of integrations are both constants.

5.7 Thermal Comptonization

With this term we mean the process of multiple scattering of a photon due
to a thermal or quasi–thermal distribution of electrons. By quasi–thermal
we mean a particle distribution that is peaked, even if it is not a perfect
Maxwellian. Since the resulting spectrum, by definition, is due to the su-
perposition of many spectra, each corresponding to a single scattering, the
details of the particle distribution will be lost in the final spectrum, as long
as the distribution is peaked. The “bible” for an extensive discussion about
this process is Pozdnyakov, Sobol & Sunyaev (1983).

There is one fundamental parameter measuring the importance of the
Inverse Compton process in general, and of multiple scatterings in partic-
ular: the Comptonization parameter, usually denoted with the letter y. Its
definition is:

y = [average # of scatt.]× [average fractional energy gain for scatt.]
(5.59)

If y > 1 the Comptonization process is important, because the Comptonized
spectrum has more energy than the spectrum of the seed photons.

5.7.1 Average number of scatterings

This can be calculated thinking that the photon, before leaving the source,
experience a sort of random walk inside the source. Let us call

τT = σTnR (5.60)

the Thomson scattering optical depth, where n is the electron density and
R the size of the source. When τT < 1 most of the photons leave the source
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directly, without any scattering. When τT > 1 then the mean free path is
d = R/τT and the photon will experience, on average, τ2T scatterings before
leaving the source. Therefore the total path travel by the photon, from the
time of its birth to the time it leaves the source is: the photon is born, is

c∆t = τ2T
R

τT
= τTR (5.61)

and ∆t is the corresponding elapsed time.

5.7.2 Average gain per scattering

Relativistic case

If the scattering electrons are relativistic, we have already seen that the
photon energy is amplified by the factor (4/3)γ2 (on average). Therefore
the problem is to find what is 〈γ2〉 in the case of a relativistic Maxwellian,
that has the form

N(γ) ∝ γ2e−γ/Θ; Θ ≡
kT

mec2
(5.62)

Setting x0 = hν0/(mec2) we have that the average energy of the photon of
initial frequency x0 after a single scattering with electron belonging to this
Maxwellian is:

〈x1〉 =
4

3
〈γ2〉 =

4

3
x0

∫∞
1 γ2γ2e−γ/Θdγ
∫∞
1 γ2e−γ/Θdγ

=
4

3
x0Θ

2Γ(5)

Γ(3)

=
4

3
x0

4!

2!
= 16Θ2x0 (5.63)

Non relativistic case

In this case the average gain is proportional to the electron energy, not
to its square. The derivation is not immediate, but we must use a trick.
Also, we have to account that in any Maxwellian, but especially when the
temperature is not large, there will be electrons that have less energy than
the incoming photons. In this case it is the photon to give energy to the
electron: correspondingly, the scattered photon will have less energy than
the incoming one. Averaging out over a Maxwellian distribution, we will
have:

∆x

x
=

x1 − x0
x0

= αΘ − x (5.64)

Where αΘ is what the photon gains and the −x term corresponds to the
downscattering of the photon (i.e. direct Compton). We do not know yet
the value for the constant α. To determine it we use the following argument.
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We know (from general and robust arguments) what happens when photons
and electrons are in equilibrium under the only process of scattering, and
neglecting absorption (i.e. when the number of photon is conserved). What
happens is that the photons follow the so–called Wien distribution given by:

FW(x) ∝ x3e−x/Θ → NW(x) =
FW(x)

x
∝ x2e−x/Θ (5.65)

where F correspond to the radiation spectrum, N to the photon spectrum,
and Θ is the dimensionless electron temperature. When a Wien distribution
is established we must have 〈∆x〉 = 0, since we are at equilibrium, So we
require that, on average, gains equal losses:

〈∆x〉 = 0 → αΘ〈x〉 − 〈x2〉 = 0 (5.66)

Calculating 〈x〉 and 〈x2〉 for a photon Wien distribution, we have:

〈x〉 =

∫∞
0 x3e−x/Θdx
∫∞
0 x2e−x/Θdx

=
Γ(4)

Γ(3)
Θ =

3!

2!
Θ = 3Θ

〈x2〉 =

∫∞
0 x4e−x/Θdx
∫∞
0 x2e−x/Θdx

=
Γ(5)

Γ(3)
Θ2 =

4!

2!
Θ2 = 12Θ2 (5.67)

This implies that α = 4 not only at equilibrium, but always, and we finally
have

∆x

x
= 4Θ− x (5.68)

Combining the relativistic and the non relativistic cases, we have an expres-
sion valid for all temperatures:

∆x

x
= 16Θ2 + 4Θ− x (5.69)

going back to the y parameter we can write:

y = max(τT, τ
2
T)× [16Θ2 + 4Θ − x] (5.70)

Going to the differential form, and neglecting downscattering, we have

dx

x
= [16Θ2 + 4Θ] dK → xf = x0 e

(16Θ2+4Θ)K → xf = x0 e
y (5.71)

where now K is the number of scatterings. If we subtract the initial photon
energy, and consider that the above equation is valid for all the x0 of the
initial seed photon distribution, of luminosity L0, we have

Lf

L0
= ey − 1 (5.72)

Then the importance of y is self evident, and also the fact that it marks the
importance of the Comptonization process when it is larger than 1.
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# scatt. Fraction of escaping 〈x〉
photons

0 e−τT → 1− τT x0
1 ∼ τT x0A
2 ∼ τ2T x0A2

3 ∼ τ3T x0A3

4 ∼ τ4T x0A4

....... ...... .......
n ∼ τnT x0An

Table 5.1: When τT < 1, a fraction e−τT of the seed photons escape without
doing any scattering, and a fraction 1 − e−τT → τ undergoes at least one
scattering. We can then repeat these fractions for all scattering orders. Even
if a tiny fraction of photons does several scatterings, they can carry a lot of
energy.

5.7.3 Comptonization spectra: basics

We will illustrate why even a thermal (Maxwellian) distribution of electrons
can produce a power law spectrum. The basic reason is that the total pro-
duced spectrum is the superposition of many orders of Compton scattering
spectra: when they are not too much separated in frequency (i.e. for not too
large temperatures) the sum is a smooth power law. We can distinguish 4
regimes, according to the values of τT and y. As usual, we set x ≡ hν/(mec2)
and Θ ≡ kT/(mec2).

The case τT < 1

Neglect downscattering for simplicity. The fractional energy gain is ∆x/x =
16Θ2+4Θ, so the amplification A of the photon frequency at each scattering
is

A ≡
x1
x

= 16Θ2 + 4Θ + 1 ∼
y

τT
(5.73)

We can then construct Table 5.1.
A look to Fig. 5.10 should convince you that the sum of all the scattering

orders gives a power law, and should also make clear how to find the spectral
slope. Remember that we are in a log–log plot, so the spectral index is
simply ∆y/∆x. We can find it considering two successive scattering orders:
the typical (logarithm of) frequency is enhanced by logA, and the fraction
of photons doing the scattering is − log τT. Remember also that we use
F (x) ∝ x−α as the definition of energy spectral index.

Therefore

α = −
log τT
logA

∼ −
log τT

log y − log τT
(5.74)
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Figure 5.10: Multiple Compton scatterings when τT < 1. A fraction τT of
the photons of the previous scattering order undergoes another scattering,
and amplifying the frequency by the gain factor A, until the typical photon
frequency equals the electron temperature Θ. Then further scatterings leave
the photon frequency unchanged.

When y ∼ 1, its logarithm is close to zero, and we have α ∼ 1. When
y > 1, then α < 1 (i.e. flat, or hard), and vice–versa, when y < 1, then its
logarithm will be negative, as the logarithm of τT, and α > 1 (i.e. steep, or
soft).

Attention! when τT # 1 and A is large (i.e. big frequency jumps be-
tween one scattering and the next), then the superposition of all scattering
orders (by the way, there are fewer, in this case) will not guarantee a perfect
power–law. In the total spectrum we can see the “bumps” corresponding to
individual scattering orders.

The case τT∼>1

This is the most difficult case, as we should solve a famous equation, the
equation of Kompaneet. The result is still a power law, whose spectral index
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is approximately given by

α = −
3

2
+

√

9

4
+

4

y
(5.75)

The case τT % 1: saturation

In this case the interaction between photons and matters is so intense that
they go to equilibrium, and they will have the same temperature. But
instead of a black–body, the resulting photon spectrum has a Wien shape.
This is because the photons are conserved (if other scattering processes
such as induced Compton or two–photon scattering are important, then one
recovers a black–body, because these processes do not conserve photons).
The Wien spectrum has the slope:

I(x) ∝ x3 e−x/Θ (5.76)

At low frequencies this is harder than a black–body.

The case τT > 1, y > 1: quasi–saturation

Suppose that in a source characterized by a large τT the source of soft
photons is spread throughout the source. In this case the photons produced
close to the surface, in a skin of optical depth τT = 1, leave the source
without doing any scattering (note that having the source of seed photons
concentrated at the center is a different case). The remaining fraction,
1− 1/τT, i.e. almost all photons, remains inside. This can be said for each
scattering order. This is illustrated in Fig. 5.11, where τT corresponds to
the ratio between the flux of photon inside the source at a given frequency
and the flux of photons that escape. If I start with 100 photons, only 1 –
say – escape, and the other 99 remain inside, and do the first scattering.
After it, only one escape, and the other 98 remain inside, and so on, until
the typical photon and electron energies are equal, and the photon therefore
stays around with the same final frequency until it is its turn to escape.
This “accumulation” of photons at x ∼ 3Θ gives the Wien bump. Note that
since at any scattering order only a fixed number of photons escape, always
the same, then the spectrum in this region will always have α = 0. This is
a “saturated” index, i.e. one obtains always zero even when changing τT or
Θ. What indeed changes, by increasing τT, is that i) the flux characterized
by x0 decreases, ii) the Wien peak will start to dominate earlier (at lower
frequencies), while nothing happens to the flux of the Wien peak (it stays
there). Increasing still τT we fall in the previous case (equilibrium, meaning
only the Wien spectrum without the x0 part).
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Figure 5.11: Multiple Compton scatterings when τT > 1 and y % 1. For the
first scattering orders, nearly all photons are scattered: only a fraction 1/τT
can escape. Therefore the number of photons escaping at each scattering
order is the same. This is the reason of the flat part, where F (x) ∝ x0.
When the photon frequency is of the order of Θ, photons and electrons are
in equilibrium, and even if only a small fraction of photons can escape at
each scattering order, they do not change frequency any longer, and therefore
they form the Wien bump, with the slope F (x) ∝ x3e−x/Θ. If we increase
τT, the flux with slope x0 decreases, while the Wien bump stays the same.
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Chapter 6

Synchrotron Self–Compton

Consider a population of relativistic electrons in a magnetized region. They
will produce synchrotron radiation, and therefore they will fill the region
with photons. These synchrotron photons will have some probability to
interact again with the electrons, by the Inverse Compton process. Since the
electron “work twice” (first making synchrotron radiation, then scattering
it at higher energies) this particular kind of process is called synchrotron
self–Compton, or SSC for short.

6.1 SSC emissivity

The importance of the scattering will of course be high if the densities of
electrons and photons are large. If the electron distribution is a power
law [N(γ) = Kγ−p], then we expect that the SSC flux will be ∝ K2, i.e.
quadratic in the electron density.

We should remember Eq. 5.54, and, instead of a generic Ur(ν), we should
substitute the appropriate expression for the specific synchrotron radiation
energy density. We will then set:

Us(ν) =
3R

4c

Ls(ν)

V
= 4π

3R

4c
εs(ν) (6.1)

where 3R/(4c) is the average photon source–crossing time, and V is the
volume of the source. Now a simple trick: we write the specific synchrotron
emissivity as

εs(ν) = εs,0 ν
−α (6.2)

Remember: the α appearing here is the same index in Eq. 5.54. Substituting
the above equations into Eq. 5.54 we have

εssc(νc) =
(4/3)α−1

2
τc εs,0ν

−α
c

∫ νmax

νmin

dν

ν
(6.3)
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As you can see, εs,0ν−α
c = εs(νc) is nothing else than the specific synchrotron

emissivity calculated at the (Compton) frequency νc. Furthermore, the in-
tegral gives a logarithmic term, that we will call ln Λ. We finally have:

εssc(νc) =
(4/3)α−1

2
τc εs(νc) ln Λ (6.4)

In this form the ratio between the synchrotron and the SSC flux is clear, it
is [(4/3)α−1/2]τc ln Λ ∼ τc ln Λ. It is also clear that since τc ≡ σTRK and
εs(νc) ∝ KB1+α, then, as we have guessed, the SSC emissivity εssc(νc) ∝ K2

(i.e. electrons work twice). Fig. 6.1 summarizes the main results.

Figure 6.1: Typical example of SSC spectrum, shown in the νFν vs ν rep-
resentation. The spectral indices instead correspond to the Fν ∝ ν−α con-
vention.
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6.2 Diagnostic

If we are confident that the spectrum of a particular source is indeed given by
the SSC process, then we can use our theory to estimate a number of physical
parameters. We have already stated (see Eq. 4.32) that observations of
the synchrotron spectrum in its self–absorbed part can yield the value of
the magnetic field if we also know the angular radius of the source (if it
is resolved). Observations in the thin part can then give us the product
RK ≡ τc/σT (see Eq. 4.28). But τc is exactly what we need to predict
the high energy flux produced by the SSC process. Note that if the source
is resolved (i.e. we know θs) we can get these information even without
knowing the distance of the source. To summarize:

F syn
thick(ν) ∝ θ2s

ν5/2

B1/2
→ get B

F syn
thin(ν) ∝ θ2sRKB1+αν−α → get τc = RK/σT (6.5)

There is an even simpler case, which for reasons outlined below, is the most
common case employed when studying radio–loud AGNs. In fact, if you
imagine to observe the source at the self absorption frequency νt, then you
are both observing the thick and the thin flux at the same time. Then, let
us call the flux at νt simply Ft. We can then re-write the equation above:

B ∝
θ4sν

5
t

F 2
t

τc ∝
Ftναt

θ2sB
1+α

Fssc(νc) ∝ τcFsyn(νc) ∝ τ2cB
1+αν−α

c

∝ F 2(2+α)
t ν−(5+3α)

t θ−2(3+2α)
s ν−α

c (6.6)

Once again: on the basis of a few observations of only the synchrotron flux,
we can calculate what should be the SSC flux at the frequency νc. Note the
rather strong dependencies, particularly for θs, in the sense that the more
compact the source is, the larger the SSC flux.

If it happens that we do observe the source at high frequencies, where
we expect that the SSC flux dominates, then we can check if our model
works. Does it? For the strongest radio–loud sources, almost never. The
disagreement between the predicted and the observed flux is really severe,
we are talking of several orders of magnitude. Then either we are completely
wrong about the model, or we miss some fundamental ingredient. We go for
the second option, since, after all, we do not find any mistake in our theory.

The missing ingredient is relativistic bulk motion. If the source is mov-
ing towards us at relativistic velocities, we observe an enhanced flux and
blueshifted frequencies. Not accounting for it, our estimates of the magnetic
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field and particles densities are wrong, in the sense that the B field is smaller
than the real one, and the particle densities are much greater (for smaller B
we need more particle to produce the same synchrotron flux). So we repeat
the entire procedure, but this time assuming that F (ν) = δ3+αF ′(ν), where
δ = 1/[Γ(1−β cos θ)] is the Doppler factor and F ′(ν) is the flux received by
a comoving observer at the same frequency ν. Then

F syn
thick(ν) ∝ θ2s

ν5/2

B1/2
δ1/2

F syn
thin(ν) ∝ θ2sRKB1+αν−αδ3+α (6.7)

The predicted SSC flux then becomes

Fssc(νc) ∝ F 2(2+α)
t ν−(5+3α)

t θ−2(3+2α)
s ν−α

c δ−2(2+α) (6.8)

If we now compare the predicted with the observe SSC flux, we can estimate
δ. And indeed this is one of the most powerful δ–estimators, even if it is not
the only one.

6.3 Why it works

We have insisted on the importance of observing the synchrotron flux both
in the self–absorbed and in the thin regime, to get B and τc. But the
self–absorbed part of the synchrotron spectrum, the one ∝ ν5/2 is very
rarely observed in general, and never in radio–loud AGNs. So, where is the
trick? It is the following. In radio–loud AGN the synchrotron emission, at
radio frequencies, comes partly from the radio lobes (extended structures,
hundreds of kpc in size, very relaxed, unbeamed, and usually self–absorbing
at very small frequencies) and from the jet. The emission from the latter is
beamed, and it is the superposition of the fluxes produced in several regions:
the most compact ones (closer to the central engine) self–absorb at high radio
frequencies (say, at 100 GHz), and the bigger they are, the smaller their self–
absorbed frequency. But what is extraordinary about these jets is that the
peak flux of each component (i.e. the flux at the self–absorption frequency)
is approximately constant (in the past, this phenomenon was called cosmic
conspiracy). Therefore, when we sum up all the components, we have a flat
radio spectrum, as illustrated by Fig. 6.2.

Of course the emission components of the jet, to behave in such a coher-
ent way, must have an electron density and a magnetic field that decrease
with the distance from the central engine in an appropriate way. There is
a family of solutions, but the most appealing is certainly B(R) ∝ R−1 and
K(R) ∝ R−2. It is appealing because it corresponds to conservation of the
total number of particles, conservation of the bulk power carried by them
(if Γ does not change) and conservation of the Poynting flux (i.e. the power
carried by the magnetic field).
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Figure 6.2: Typical example of the composite spectrum of a flat spectrum
quasars (FSRQ) shown in the Fν vs ν representation, to better see the flat
spectrum in the radio. The reason of the flat spectrum is that different parts
of the jet contributes at different frequencies, but in a coherent way. The blue
line is the SSC spectrum. Suppose to observe, with the VLBI, at 22 GHz:
in this framework we will always observe the jet component peaking at this
frequency. So you automatically observe at the self–absorption frequency of
that component (for which you measure the angular size).

To our aims, the fact that the jet has many radio emission sites self–
absorbing at different frequency is of great help. In fact suppose to observe
a jet with the VLBI, at one frequency, say 22 GHz. There is a great chance to
observe the emission zone which is contributing the most to that frequency,
i.e. the one which is self–absorbing at 22 GHz. At the same time you
measure the size. Then, suppose to know the X–ray flux of the source. It will
be the X–ray flux not only of that component you see with the VLBI, but an
integrated flux from all the inner jet (with X–ray instruments the maximum
angular resolution is about 1 arcsec, as in optical). But nevertheless you
know that your radio blob cannot exceed the measured, total, X–ray flux.
Therefore you can put a limit on δ (including constants):

δ > (0.08α + 0.14) (1 + z)

(

Ft

Jy

)(

Fx

Jy

)− 1
2(2+α) ( νx

1 keV

)− α
2(2+α)

×
( νt
5 GHz

)− 5+3α
2(2+α)

(

2θs
m.a.s.

)− 3+2α
2+α

[

ln

(

νs,max

νt

)]
1

2(2+α)

(6.9)

For some sources you would find δ > 10 or 20, i.e. rather large values.
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