
Chapter 2

Bremsstrahlung and black
body

2.1 Bremsstrahlung

We will follow an approximate derivation. For a more complete treatment
see Rybicki & Lightman (1979) and Blumental & Gould (1970). We will
consider an electron–proton plasma.

Definitions:

• b: impact parameter

• v: velocity of the electron

• ne number density of the electrons

• np: number density of the protons

• T : temperature of the plasma: mv2 ∼ kT → v ∼ (kT/m)1/2.

We here calculate the total power and also the spectrum of bremsstrahlung
radiation. We divide the procedure into a few steps:

1. We consider the interaction between the electron and the proton only
when the electron passes close to the proton. The characteristic time
τ is

τ ≈
b

v
(2.1)

2. During the interaction we assume that the acceleration is constant and
equal to

a ≈
e2

meb2
(2.2)
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3. From the Larmor formula we get

P =
2e2a2

3c3
≈

e2

c3
e4

m2
ec3b4

=
e6

m2
ec3b4

(2.3)

Note that we have dropped the 2/3 factor, since in this simplified
treatment we neglect all the numerical factors of order unity. Later
we will give the exact result.

4. Since there is a characteristic time, there is also a characteristic fre-
quency, namely τ−1:

ω ≈
1

τ
=

v

b
(2.4)

5. Therefore

P (ω) ≈
P

ω
=

e6

m2
ec

3vb3
(2.5)

6. We can estimate the impact factor b from the density of protons:

b ≈ n−1/3
p → b3 =

1

np
(2.6)

7. The emissivity j(ω) will be the power emitted by a single electron mul-
tiplied by the number density of electrons. If the emission is isotropic
we have also to divide by 4π, since the emissivity is for unit solid angle:

j(ω) ≈
nenp

4π

e6

m2
ec

3

(me

kT

)1/2
(2.7)

8. We integrate j(ω) over frequency. The integral will depend upon ωmax.
What should we use for ωmax? One possibility is to set !ωmax = kT .
This would mean that an electron cannot emit a photon of energy
larger than the typical energy of the electron. Seems reasonable, but
we are forgetting all the electrons (and the frequencies) that have
energies larger than kT . In this way:

j =

∫ ωmax

0
j(ω)dω ∼

nenp

4π

e6

m2
ec

3

(me

kT

)1/2 kT

!

=
nenpe6

4πm2
ec

3

(mekT )1/2

!
(2.8)

We suspect that in the exact results there will be the contribution
of electrons with energy larger than kT : since they belong to the
exponential part of the Maxwellian, we suspect that in the exact result
there will be an exponential...
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9. The exact result, considering also that ν = ω/(2π), is

j(ν) =
8

3

(

2π

3

)1/2 nenpe6

m2
ec

3

(me

kT

)1/2
e−hν/kT ḡff

j =
4

3π

(

2π

3

)1/2 nenpe6

m2
ec

3

(mekT )1/2

!
ḡff (2.9)

The Gaunt factor ḡff depends on the minimum impact factor which in
turn determines the maximum frequency. Details are complicated, but see
Rybicki & Lightman (p. 158–161) for a more detailed discussion.

We have treated the case of an electron–proton plasma. In the more
general case, the plasma will be composed by nuclei with atomic number
Z and number density n. The emissivity will then be proportional to Z2.
This is because the acceleration of the electron will be a = Ze2/(meb2) (see
point 2), and we have to square the acceleration to get the power from the
Larmor formula. In cgs units we have:

j(ν) = 5.4 × 10−39 Z2neniT
−1/2e−hν/kT ḡ

j = 1.13 × 10−28 Z2neniT
1/2ḡ (2.10)

2.1.1 Free–free absorption

If the underlying particle distribution is a Maxwellian, we can use the Kir-
choff law to find out the absorption coefficient. If Bν is the intensity of black
body emission, we must have

Sν ≡
jν
αν

= Bν =
2hν3

c2
1

ehν/kT − 1
(2.11)

In these cases it is very simple to find αν once we know jν . Remember: this
can be done only if we have a Maxwellian. If the particle distribution is
non–thermal, we cannot use the Kirchoff law and we have to go back to a
more fundamental level, namely to the Einstein coefficients. Using Eg. 2.11
we have:

αff
ν =

jν
Bν

=
4

3

(

2π

3

)1/2 Z2nenie6

hm2
ec

2

(

mec2

kT

)1/2
1− e−hν/kT

ν3
ḡff (2.12)

In cgs units [cm−1] we have

αff
ν = 3.7 × 108

Z2neni

T 1/2

1− e−hν/kT

ν3
ḡff (2.13)

When hν ' kT (Raleigh–Jeans regime) this simplifies to

αff
ν = 0.018

Z2neni

T 3/2ν2
ḡff (2.14)
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Figure 2.1: The bremsstrahlung intensity from a source of radius R = 1015

cm, density ne = np = 1010 cm−3 and varying temperature. The Gaunt
factor is set to unity for simplicity. At smaller temperatures the thin part of
Iν is larger (∝ T−1/2), even if the frequency integrated I is smaller (∝ T 1/2).

Fig. 2.1 shows the bremsstrahlung intensity from a source of radius R =
1015 cm and ne = np = 1010 cm−3. The three spectra correspond to different
temperatures. Note that for smaller temperatures the thin part of Iν is larger
(Iν ∝ T−1/2). On the other hand, at larger T the spectrum extends to larger
frequencies, making the frequency integrated intensity to be larger for larger
T (I ∝ T 1/2). Note also the self–absorbed part, whose slope is proportional
to ν2. This part ends when the optical depth τ = ανR ∼ 1.

2.1.2 From bremsstrahlung to black body

As any other radiation process, the bremsstrahlung emission has a self–
absorbed part, clearly visible in Fig. 2.1. This corresponds to optical depths
τν ) 1. The term ν−3 in the absorption coefficient αν ensures that the ab-
sorption takes place preferentially at low frequencies. By increasing the den-
sity of the emitting (and absorbing) particles, the spectrum is self–absorbed
up to larger and larger frequencies. When all the spectrum is self absorbed
(i.e. τν > 1 for all ν), and the particles belong to a Maxwellian, then we
have a black–body. This is illustrated in Fig. 2.2: all spectra are calculated
for the same source size (R = 1015 cm), same temperature (T = 107 K),
and what varies is the density of electrons and protons (by a factor 10) from
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Figure 2.2: The bremsstrahlung intensity from a source of radius R = 1015

cm, temperature T = 107 K. The Gaunt factor is set to unity for simplicity.
The density ne = np varies from 1010 cm−3 (bottom curve) to 1018 cm−3

(top curve), increasing by a factor 10 for each curve. Note the self–absorbed
part (∝ ν2), the flat and the exponential parts. As the density increases, the
optical depth also increases, and the spectrum approaches the black–body
one.

ne = np = 1010 cm−3 to 1018 cm−3. As can be seen, the bremsstrahlung
intensity becomes more and more self–absorbed as the density increases,
until it becomes a black–body. At this point increasing the density does
not increase the intensity any longer. This is because we receive radiation
from a layer of unity optical depth. The width of this layer decreases as we
increase the densities, but the emissivity increases, so that

Iν =
jνR

τν
∝

nenpR

nenpR
→ constant (τν ) 1) (2.15)
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2.2 Black body

A black body occurs when “the body is black”: it is the perfect absorber.
But this means that it is also the “perfect” emitter, since absorption and
emission are linked. The black body intensity is given by

Bν(T ) =
2

c2
hν3

ehν/kT − 1
(2.16)

Expressed in terms of the wavelength λ this is equivalent to:

Bλ(T ) =
2hc2

λ5
1

ehc/λkT − 1
(2.17)

Note the following:

• The black body intensity has a peak. The value of it is different if we
ask for the peak of Bν or the peak of νBν.
The first is at hνpeak = 2.82 kT .
The second is at hνpeak = 3.93 kT .

• If T2 > T1, then: Bν(T2) > Bν(T1) for all frequencies.

• When hν ' kT we can expand the exponential term: ehν/kT → 1 +
hν/kT..., and therefor we obtain the Raleigh–Jeans law:

IRJ
ν =

2ν2

c2
kT (2.18)

• When hν ) kT we have ehν/kT −1 → ehν/kT and we obtain the Wien
law:

IWν =
2hν3

c2
e−hν/kT (2.19)

• The integral over frequencies is:
∫ ∞

0
Bνdν =

σMB

π
T 4, σMB =

2π5k4

15c2h3
(2.20)

The constant σMB is called Maxwell–Boltzmann constant.

• The energy density u of black body radiation is

u =
4π

c

∫ ∞

0
Bνdν = aT 4, a =

4σMB

c
(2.21)

The two constants (σMB and a) have the values:

σMB = 5.67× 10−5 erg cm−2 deg−4 s−1

a = 7.65× 10−15 erg cm−3 deg−4 (2.22)
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Figure 2.3: The black body intensity compared with the Raleigh–Jeans
and the Wien law.

• The brightness temperature is defined using the Raleigh–Jeans law,
since IRJ

ν = (2ν2/c2)kT we have

Tb =
c2IRJ

ν

2kν2
(2.23)

• A black body is the most efficient radiator, for thermal plasmas and
incoherent radiation (we can have coherent processes that are even
more efficient). For a given surface and temperature, it is not possible
to overtake the luminosity of the black body, at any frequency, for any
emission process.

• Let us try to find the temperature of the surface of the Sun. We
know its radius (700,000 km) and luminosity (L# = 4× 1033 erg s−1).
Therefore, from

L# = π 4πR2
∫ ∞

0
Bνdν = 4πR2σMBT

4 (2.24)

we get:

T# =

(

L#

4πR2σMB

)1/4

∼ 5800 K (2.25)
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• A spherical source emits black body radiation. We know its distance,
but not its radius. Find it. Suppose we do not know its distance. Can
we predict its angular size? And, if we then observe it, can we then
get the distance?


