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Supernova SN1994D in NGC4526

Shocks are not important for light in “Nobel prize” SNe la




SN 2006gy

Ofek et al. 2007, ApJL SN 2006gy

Smith et al. 2007, ApJ

Shocks are
vital for 3
explaining light =
of those o /

superluminous

events for NGC 1260 nucleus
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months...
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SNR Tycho in X-rays (Chandra)

...and thousands of years in SNRs




Supernovae: order of events

#® Core collapse (CC) or explosion
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Supernovae: order of events

°

Core collapse (CC) or explosion

°

Neutrino/GW signal, accompanying signals

°

Shock creation if any, propagation and entropy
production inside a star

Shock breakout (!)
Diffusion of photons and cooling of ejecta

o o
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Supernovae: order of events

°

Core collapse (CC) or explosion

°

Neutrino/GW signal, accompanying signals

°

Shock creation if any, propagation and entropy
production inside a star

Shock breakout (!)
Diffusion of photons and cooling of ejecta

o o ©

But this produces ordinary, weak supernovae
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Double explosion: an old idea

Grasberg & Nadyozhin (1986)

o - .
s Type ll supernovae: two successive explosions?
E E. K. Grasberg and D. K. Nadézhin

e |

: g Radio Astrophysical Observatory, Latvian Academy of Sciences, Riga

i and Institute of Theoretical and Experimental Physics, Moscow

£ (Submitted September 5, 1985)

o Pis'ma Astron. Zh. 12, 168-175 (February 1986)

1o |

il

A type II supernovae model wherein a weak explosion precedes a much stronger one can explain the behavior
of the narrow-line systems observed in some type II spectra. For SN 1983k in NGC 4699, the two outbursts
would have been separated by 1-2 months. Core gravitational collapse generating a relatively weak shock as
the presupernova reorganizes itself might trigger the first explosion, while the second would occur when the
newborn neutron star transfers energy to the envelope that has failed to collapse.
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Another old idea (1984)

The first paper where merging
neutron stars we suggested as
extragalactic GRBs

Exploding neutron stars in close binaries

S. |. Blinnikov, |. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev
: Institute of Theoretical and Experimental Physics, Moscow
3 and Institute for Space Research, USSR Academy of Sciences, Moscow
I
(Submitted January 27, 1984}
Pis'ma Astron. Zh. 10, 422-428 (June 1934}

Not my subject today




First messengers of explosions

Neutrino?




First messengers of explosions

Neutrino? |— | Gravitational waves?




First messengers of explosions

Neutrino? |— | Gravitational waves? |—
Radio waves? At least in atmospheric explosions
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First messengers of explosions

Neutrino? |— | Gravitational waves? |—

Radio waves? At least in atmospheric explosions| —
Shock breakout
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SN classification

thermonuclear core collapse
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Extremely bright Type lin SNe
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H-poor superluminous SNe

Quimby et al. 2011
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Still enigmatic. Most probably explained by a long living
radiative shock. No better model is suggested
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Relation to GRBs & Early Universe

o

Some GRBs correlate with SNe (Hypernovae)

Supeluminous SNe (SLSNe) can be probes of Early
Universe (up to z ~ 20 <+ 30 with JWST)

# Physics of radiating shocks can be studied in detail and
may have relevance to the physics of GRBs and their
afterglows

°
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Radiative shocks

First, consider shock waves where the accompanying
radiation (photons, and/or neutrinos) is trapped in the
matter, contrary to SNRs.

see Zeldovich and Raizer (1966) “Physics of Shock Waves
and High-Temperature Hydrodynamic Phenomena’
Important papers/books:

R.G.Sachs 1946

Ya.B.Zeldovich 1957, Yu.P.Raizer 1957

R.E.Marshak 1958

F.A.Baum, S.A.Kaplan,K.P.Stanjukovich 1958

H.K.Sen, A W.Guess 1958

T.Kogure, T.Osaki 1961, N.Ohyama 1963
V.S.Imshennik, Yu.Morozov 1962 — 1975, also a book 1981
|.A.Klimishin+ 1959 — ... also a book 1984

S.Narita 1973, T.A.Weaver 1976
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Zeldovich shock classification

Radiative shock waves are divided Iinto
four classes in order of increasing
strength:

1) Subcritical Shocks

2) Critical Shocks

3) Supercritical Shocks

4) Radiation Dominated Shocks




Supercritical Shock Waves

The principal transport of energy Is carried out by radiation
through the leading Marshak wave. Almost all of the
compression occurs as matter crosses the shock front.

Front velocity
“——
Final T

Marshak
wave

—

| Unshocked T
ph
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Radiation Dominated Shocks

In extremely strong shocks the radiation pressure and
energy density exceed the kinetic pressure and energy of
the gas. At this point we basically have a shock in a photon
gas and the photon gas (with v = 4/3) dominates the

situation.
The maximum shock compression is thus:

y+1_ 4341

vy—1 4/3—1

But this is true only for an adiabatic shock. For radiative
(almost isothermal) shocks the compression may be orders

of magnitude higher
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Viscous jump disappears

In radiation dominated shocks the preheating effect
becomes so large that one of the most typical features of
classical shock waves, namely, the viscous jump In
pressure and density at the hydrodynamic shock front —
diminishes and completely disappears in a sufficiently
strong shock.

SW velocity
Marshak
— wave

| Unshocked T
ph

Final T
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No jump for large P, /P,

In the equilibrium diffusion approximation the jump
dissappears when the ratio between radiation pressure and
gas pressure Is P, /P, ~ 4.4 - (S.Z.Belen’kii — unpublished

report, V.A.Belokon’ 1959) . Agrees with Weaver and
Chapline.

In radiation dominated shocks not only the preheating effect
IS Important. The momentum transfer from photons to
electrons (and hence to ions, via the electric field) is very
large. This also destroys the viscous jump in pressure and
density at the hydrodynamic shock front.
Imshennik, Morozov (1964) have found with accurate
account of photon transfer (but without account of
scattering) that this happens when P,/ P, ~ 8.5.

In the shocks with non-thermal relativistic particles, trapped by magnetic field (cosmic rays) a
similar transition is possible - the viscous jump can disappear and the shock is mediated
then by cosmic rays (see, e.g. Malkov & Drury; Bulanov & Sokolov; etc.).

EXUL14Jun12-Pr osper —p. 19



Shocks inside SNe, e.g., SN 1987A

"~ 14E1

t=80007 s
30- -
velocity vs a
mass frqm £ 20 _
surface, time 5 [
In seconds 5t
IS given 10 _

l—2l | l-4l | l—6l | l—8l ll—lOll l—12
lg (M - Mr)/MO

EXUL14Jun12-Pr osper —p. 20



Shocks: entropy source for SN |

A shock inside the star remains in adiabatic phase while

optical depth,
OR C

T=— > —,
14 D

where £ is photon mean free path and d R is the distance
from the shock to the photosphere (Ohyama N. 1963, also
Imshennik V.S., Morozov Yu.l. 1964)

When
_oR ¢
¢ 7 D
the burst of photon luminosity begins:

shock break-out .
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End of shock acceleration

The termination of the shock acceleration process is clearly
observed in computations.

Next figure shows the profiles of velocity as a function of
optical depth 7 (Blinnikov 1999). Justat + ~ ¢/D ~ 10, as
predicted, the photons start ‘running-out’ from behind the
shock front. These photons slightly accelerate the outer
layers, however, the cumulation of energy on the small
mass is already not efficient due to strong radiative losses.
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Velocity — optical depth

u, 10 km/s
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Shock T'(m) in SN 1987A

Normal opacity

3 I BTN BTN BT B
-2 -4 -6 -8 -10 -12
log (M—M,)/Mg




SN87A Luminosity and Ty

N7 = 200, A = 0.01
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Shock Luminosity in SNe |

_25""I""I""I""I""

Shocks:
Different R0
radii at 2 |
shock-
breakohut _ K Ny —
epoc i —_— |

I R=10

| | a1 |
0 0.1 0.2 0.3 0.4 0.5
t, days

EXUL14Jun12-Pr osper —p. 26



Effective Temperature in SN |l
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Velocity, Eulerian
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Density as a function of radius

Due to
Inefficient
acceler-
ation a
density
peak IS
formed

In  outer
layers.
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Long Living Dense shells-1
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Long Living Dense shells-2
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Long Living Dense shells-3
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Long Living Dense shells-4
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How to compute radiative shocks?

Comoving frame transfer ror arbitrary Lorentz-factor v (with 3 = u/c) Eq.

(95.9) in (Mihalas & Mihalas 1984):

oI(p,v)
ot

oI(p,v)
or T

Bﬁ] oI(p,v)

or ou

oI (p,v)
ov T

11+ 8w + (s + B)
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Here 1 - emission coefficient, x - exctinction coefficient

(1)
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STELLA vs RADA for SNIb/c

We used two algorithms: sTeLLA
and rRADA




Two radiation hydro codes

STatic Eddington-factor Low-velocity Limit Approximation

STELLA (solid) vs RADA (dotted) for SN1987A
A.Tolstov: RADA — fully Relativistic rADiation transfer
Approximation
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Dashed line represents rapa results in observer’s frame with light-travel-time correction.
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Flash at Ib shock breakout

Notice rings due to light-travel time delay:

76.5s




‘Visible’ disk of SN 20069y

ightn
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for SNZ00Ggy s110 model
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What is T of matter and radiation?

It is a Very Important Question.

Old simulations predicted a very hard X-ray spectrum for
large stars like Red Supergiants and SN 1987A at
shock-breakout.

We predict (with sTeLLa and rapa) rather soft spectra.
Numerically this was already studied by Weaver (1976) but
for higher density. He never gets those high T" shocks. His
work Is virtually ignored by the SN community. He was
crticized for assuming equilibrium diffusion, but he had
reasons.
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Luminosity and 1" "X2" run

N¢ = 200, Ain = 0.01
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Now spectra vF,:. "X2" run

Nf = 200, Amin = 0.01
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SN Ib slb7arun: T (m)

N = 200, Ain = 0.001; Peak T at T ~ 200, 50, 4, 1, 0
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Weak absorption o = 10~% changes T

N¢ = 200, Apin = 0.001; Peak T at 7 ~ 200, 50, 4, 0.5

8 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

-2 -4 -6 -8 -10 -12
log (M — M,)/M,

EXUL14Jun12-Pr osper —p. 43



Direct observations of shock-breakouts

SN factory NGC2770
SN2008D shock-breakout caught by A.Soderberg et al.; LC
Modjaz et al. (2008); image 12 Jan 2008

SN2008D/XRF080109
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XRT 080109/SN 2008D
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SN 2008D and other SNIb/c
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XRF080109, no shock breakout?

Li-Xin LI MNRAS 388(2008)603
A Two-temperature black-body
spectrum
Claims R, too small.
Actually, No Problem!




Two-temperature spectrum
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Spectra vF,,, slb7a o = 10~ % run

N¢ = 200, Amin = 0.001

N
(o)}

N
o
I 1T 1T 1 I LI

IIIIIIIIIIIIII45

t=67.0 t=67.8

40

35

lg VL, erg s7!

\
1
1
|
\
|
1

l
0 2 4 6

30

P
a0 B B
I
o - -
3 : :
A — - _
» - v -
=20 L, - _ | -
-/ t=68.1 - _ t=68.9 , -
30 I-I 11 1 I 11 1 I 1 1 I I- 30 I-I 11 1 I | | I|I| 11 1 I F
0 2 4 6 0 2 4 6
lg hv, eV lg hv, eV

EXUL14Jun12-Pr osper —p. 49



SN Il shocks observed

Observations Gezari ea’08, Schawinski ea’08, simulations Tominaga ea’09

Obs'eryed flash alnd' STELLA
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SN Il shock spectrum

Observed spectrum and
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Circumstellar matter

The main puzzle for
XRF080109-SN2008D is its long duration
(for a compact preSN Ib/c).
Explained by a rather dense wind, a
circumstellar cloud.

This may be a general feature for some of
the Most Luminous Supernovae on
much larger and longer scale.




SN 2006gy

Ofek et al.
2007, ApJL,
astro-
ph/0612408)

SN 20064y

Smith et al. /
2007, Sep. 10

ApJ, astro- NGC 1260 nucleus
ph/0612617) E
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Brightest. Supernova. Ever
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It was Most Luminous SN ever

Absolute Magnitude
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Extremely bright Type lin SNe
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Luminous SN: too many photons?

Now we know a few other SNe with peak luminosity even
higher than SN 2006gy.

Total light 10°! ergs: 2 orders of
mag higher than normal core
collapsing SN and 1 order more
than brightest thermonuclear SN

To explain this light we inevitably involve long-living radiative
shocks.




SN lIn structure, Chugal, SB ea’04
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Shocks in SNe IlIn

A long liv-
Ing shock:
an example

for SN1994w
of type lIn.
Density as a
function of the
radius r in two
models at day
30. The struc-
ture tends to
an i1sothermal
shock wave.
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Four kinds of deaths

With some unertainty about exad demacations, onecan
ddineete four kinds of deaths fornonrotating helium stars.
(For rotation decrease main sequence mass 10 - 20%o)

He Core Main Seq. Mass  Supernova Mechanism
2<M<40 1M <95  Fecore collapse to neutron star

or ablack hde
40<M <60 OX M <130 Pulsationa pair instability foll owed

by Fe core coll apse

60< M <137 13K M <260 Pair ingability supernova

M >137 M >260 Bladk hole. Posshle GRB
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Very Massive Stars

approximate Initial total stellar mass / solar masses
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Bolometric for ed250 (2001)
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UBVR for ed250 and SNO6gy
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Kasen,Woosley,Heger 2011
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Visibility at large =z

Observed K-band Magnitude
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Woosley, Blinnikov, Heger, s103
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Two mass ejections
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SN-repeaters
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Several ejections are possible

He Mass Pulse KE; AM T, O interval
(Mg) (10%° erg) (Mg) (10° K) (10° g em™)  (sec)
48 1 0.048 0.11 1.48 1.68 7.34(5)
2 0.92 0.57 1.57 2.02 4.31(5)
3 2.20 1.19 1.31 1.34 2.77(6)
4 3.09 1.64 1.38 3.00 2.02(6)
5 4.41 1.84 1:32 3.40 8.33(6)
6 3.02 2.42 1.86 28.6 7.43(5)
b2 1 0.85 1.13 1.01 0.40 6.32(?)
2 1.46 0.94 1.5F 5.02 4.58(5)
3 4.27 1.90 1.16 2.74 8.1[](6)
4 7.29 12 1.09 2.68 9.56(7)
58 1 13.3 9.39 0.24 0.0072 1.24(11)
' 4.00 2.39 1.46 6.08 2.10(6)
3 7.8 3.06 1.07 3.31 1.61(8)
EXUL14Jun12-Pr osperlt p. 69




Light curve for SN2006gy

from Woosley, SB, Heger (2007)
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Stella: LCs for SN2006gy
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Hydro structure 60 d
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60 d, mass coordinate
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‘Visible’ disk of SN 20069y
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‘Visible’ disk of SN 20069y ¢

ightness for SN2006gy s110 model
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Next is partly based on arXiv:1009.4353 and inspired by
Chris Fryer’'s work on shocks in C/O winds
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H-poor superluminous SNe

Quimby et al. 2011
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Very bright Type Ib SNe with narrow lines
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Compare SN1999E with brighter SNelln
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Windy models for core collapse SNe

explosion

$ir
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Our synthetic models for type Ic SNe

Ejecta: polytropic mass distribution;
Wind: p ~ r7P

Composition: uniform for most of models (always uniform

for the wind):
0.5C + 0.5 O + 2% heavier elements of Solar abundance;

ORHe +2% 7
as a rule no °°Ni — to check the influence of the pure shock

as a rule: velocity in the “wind”: « = 0, but some runs are
done for high u
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Initial models

Samples of the density distribution
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Initial models

Samples of the density distribution
p=1.8(black), 2.5(red); M_=0.2My(black), 1My(red)
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Windy models for type Ic SNe

all masses M and radii R are in solar units

Model Me; Rej Mni p My Ry E, foe
out 6esa 10 9.1-10° 0 0 4.15 10° 1.5
out 7p3 10 6.3-103 0 3 3.3 10° 1.5
out 8p3 10 5.7-103 0 3 6.8 10° 1.5
out 9p3 1.7 5 0 3 98 1.2-10° 1.5;3
out 10p2 2 10 0 2 45 1.3-10° 3
out 11p2 10 7.4-103 0 2 4 10° 3
out 12p3 2 0 3 045 1.2-10° 3
out 13p3 2 0 3 052 1.3-10° 3
out 14p2 1 10 0 2 45 1.2-10° 3
out 15p25 1 9 0 25 29 1.2-10° 3

and others.....
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Light curves for different wind structure
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LCs for different explosion energies
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CO vs. He wind
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CO vs. He wind
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STELLA vs. RADA (colored)
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°6Ni vs. Shock wave heating
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°6Ni vs. Shock wave heating
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"Ni vs. Shock wave heating

2 previous plots combined
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Models for SN2010gx

15

20

obs. mag

25

30

o *OSDmony,

' SN '2010gx and model |
low £k p=1.8 R,=9 E=2 |

obs. mag

15

20

25

30

' SN '2010gx and model
low £ p=1.8 R,=9 E=4 ]

EXUL14Jun12-Pr osper —p. 93



PTF10cwr=SN2010gx absolute w

pw x 72, E = 3 Bethe
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PTF10cwr=SN2010gx, double explosion

Fast moving “wind” p, o< r~ 18, E = 2 4 2 Bethe
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Extragalactic Distance Ladder
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Extragalactic Distance Ladder
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Basics for Cosmography

Photometric distance:

L(emitted, ergs/s)

d12>h - 2
47 F(observed, ergs/s/cm®)

Dependence on redshift z
dph (2) (S, QpE, w(z)) ‘theory
Is determined by cosmology. Comparison with the
don(z)(0bserved)

allows one to find Q2,,,, Qpp, w(z), etc.
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Expanding Photosphere Method (EPM)

Cf. Baade(1926)-Wesselink(1946) method for Cepheids .
Measuring color and flux at two different times, ¢; and ¢,
one finds the ratio of the star’s radii, R2/R; (or from

Interferometry).
Using weak lines which are believed to be formed near the

photosphere one can measure the photospheric speed v;y,.
Then fttf vpndt would give AR, = Ro — Ry.

Knowing Rs/R; and Ry — Ry, it is easy to solve for the radii.
The ratio of fluxes gives

d_2 I (emitted)
R?  F,(observed) ’

hence the distance d.
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Distance from EPM

Now the distance d to the supernova Is

F,(model)
d=R
ph\/F ,(observed )

if a reliable model flux F),(model) at the SN
photosphere Is compared with the
detected flux F, (observed).




Observed R(t) of SN2006gy
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New DSM for SNe lIn

o

Measure narrow line components to estimate the
properties of CS envelope (may be done crudely).

Measure wide line components to find the photospheric
speed v}, (as accurately as possible).

Build a best fitting model for broad band photometry
and the speed vyy,.
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New DSM for SNe lIn

# Although the “Hubble”-law v = r/t is not applicable,
vph NOW measures true velocity of the photospheric
radius (not only the matter flow speed, as in type II-P).

# Now the original Baade’s idea works for measuring the
radius by integrating v, (of course, with due account

of scattering, limb darkening etc in a time-dependent
SEAM). This must be used when iterating the best
fitting model.

#® The observed flux then gives the distance.
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MC probable d to SN 2006
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n Carinae: Multl-D Is a must

for next steps in theoretical modeling
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A. J. van Marle et al. MN 2010
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A. J. van Marle et al. MN 2010
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Summary on SN IlIn In cosmology

# Radiating shocks are most probable sources of light in
most luminous supernovae of type lIn like SN2006gy

# Most luminous SN lIn events may be observed at high =
[for years due to (1 + z)] and may be useful as direct,
primary, distance indicators in cosmology

# The new DSM is based on original Baade idea which
really works now
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Conclusions-1

#® The shock wave which runs through rather dense
matter surrounding an exploding star can produce
enough light to explain very luminous SN events. No
°6Nij is needed in this case to explain the light curve
near maximum light (some amount may be needed to
explain light curve tails).

We need the explosion energy of only 2-4 Bethe for the
shell with M = 3 — 6 Mg and R < 10'%cm. NARROW
LINES MAY NOT BE PRODUCED!
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Conclusions-2

# Questions on the latest phases of star evolution arise:

s Is it possible to form so big and dense envelopes?
And how?

o Time scale for such a formation
» How far can the envelope extend?

s Density and temperature profiles inside the envelope
right before the explosion

# Question to observations: try to find traces of such
shells for bright explosions.
(There are spectral evidence of circumstellar shells for

type lIn and Ibn SNe. Is it possible to find C-O
envelopes as well?)
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Conclusions-3

# Many technical problems in light curve calculations:
» line opacities;
» dimensionality: 3D is preferable, since the envelope
can most probably be clumpy;

» NLTE spectra
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