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Supernova SN1994D in NGC4526
Shocks are not important for light in “Nobel prize” SNe Ia
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SN 2006gy

Ofek et al. 2007, ApJL

Smith et al. 2007, ApJ

Shocks are
vital for

explaining light
of those

superluminous
events for

many
months...
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SNR Tycho in X-rays (Chandra)

...and thousands of years in SNRs
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Supernovae: order of events
Core collapse (CC) or explosion
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Supernovae: order of events
Core collapse (CC) or explosion

Neutrino/GW signal, accompanying signals

Shock creation if any, propagation and entropy
production inside a star

Shock breakout (!)

Diffusion of photons and cooling of ejecta

But this produces ordinary, weak supernovae
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Double explosion: an old idea

Grasberg & Nadyozhin (1986)

EXUL14Jun12-Prosper – p. 7



Another old idea (1984)

The first paper where merging
neutron stars we suggested as

extragalactic GRBs

Not my subject today
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First messengers of explosions

Neutrino?
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First messengers of explosions

Neutrino? → Gravitational waves? →

Radio waves? At least in atmospheric explosions →

Shock breakout
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SN classification
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Turrato 2003
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Extremely bright Type IIn SNe

V-band
(Drake et al. 2010)

SN1987A and a typ-
ical SNII below the
frame!
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H-poor superluminous SNe
Quimby et al. 2011
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Still enigmatic. Most probably explained by a long living
radiative shock. No better model is suggested
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Relation to GRBs & Early Universe
Some GRBs correlate with SNe (Hypernovae)

Supeluminous SNe (SLSNe) can be probes of Early
Universe (up to z ∼ 20 ÷ 30 with JWST)

Physics of radiating shocks can be studied in detail and
may have relevance to the physics of GRBs and their
afterglows
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Radiative shocks
First, consider shock waves where the accompanying
radiation (photons, and/or neutrinos) is trapped in the
matter, contrary to SNRs.
see Zeldovich and Raizer (1966) “Physics of Shock Waves
and High-Temperature Hydrodynamic Phenomena”
Important papers/books:
R.G.Sachs 1946
Ya.B.Zeldovich 1957, Yu.P.Raizer 1957
R.E.Marshak 1958
F.A.Baum, S.A.Kaplan,K.P.Stanjukovich 1958
H.K.Sen, A.W.Guess 1958
T.Kogure, T.Osaki 1961, N.Ohyama 1963
V.S.Imshennik, Yu.Morozov 1962 – 1975, also a book 1981
I.A.Klimishin+ 1959 – ... also a book 1984
S.Narita 1973, T.A.Weaver 1976
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Zeldovich shock classification
Radiative shock waves are divided into

four classes in order of increasing

strength:

1) Subcritical Shocks

2) Critical Shocks

3) Supercritical Shocks

4) Radiation Dominated Shocks
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Supercritical Shock Waves
The principal transport of energy is carried out by radiation
through the leading Marshak wave. Almost all of the
compression occurs as matter crosses the shock front.

Unshocked  T

Final T

Front  velocity




lph

Marshak

  wave
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Radiation Dominated Shocks
In extremely strong shocks the radiation pressure and
energy density exceed the kinetic pressure and energy of
the gas. At this point we basically have a shock in a photon
gas and the photon gas (with γ = 4/3) dominates the
situation.
The maximum shock compression is thus:

γ + 1

γ − 1
=

4/3 + 1

4/3 − 1
= 7 .

But this is true only for an adiabatic shock. For radiative
(almost isothermal) shocks the compression may be orders
of magnitude higher
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Viscous jump disappears
In radiation dominated shocks the preheating effect

becomes so large that one of the most typical features of
classical shock waves, namely, the viscous jump in

pressure and density at the hydrodynamic shock front –
diminishes and completely disappears in a sufficiently

strong shock.

Unshocked  T


Final T


SW  velocity





lph


Marshak

  wave
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No jump for large Pr/Pg

In the equilibrium diffusion approximation the jump
dissappears when the ratio between radiation pressure and
gas pressure is Pr/Pg ≃ 4.4 - (S.Z.Belen’kii – unpublished

report, V.A.Belokon’ 1959) . Agrees with Weaver and
Chapline.

In radiation dominated shocks not only the preheating effect
is important. The momentum transfer from photons to

electrons (and hence to ions, via the electric field) is very
large. This also destroys the viscous jump in pressure and

density at the hydrodynamic shock front.
Imshennik, Morozov (1964) have found with accurate

account of photon transfer (but without account of
scattering) that this happens when Pr/Pg ≃ 8.5.

In the shocks with non-thermal relativistic particles, trapped by magnetic field (cosmic rays) a
similar transition is possible - the viscous jump can disappear and the shock is mediated

then by cosmic rays (see, e.g. Malkov & Drury; Bulanov & Sokolov; etc.).
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Shocks inside SNe, e.g., SN 1987A

velocity vs
mass from

surface, time
in seconds

is given
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Shocks: entropy source for SN II
A shock inside the star remains in adiabatic phase while
optical depth,

τ ≡
δR

ℓ
>

c

D
,

where ℓ is photon mean free path and δR is the distance
from the shock to the photosphere (Ohyama N. 1963, also
Imshennik V.S., Morozov Yu.I. 1964)
When

τ =
δR

ℓ
<
∼

c

D
,

the burst of photon luminosity begins:

shock break-out .
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End of shock acceleration
The termination of the shock acceleration process is clearly

observed in computations.

Next figure shows the profiles of velocity as a function of
optical depth τ (Blinnikov 1999). Just at τ ∼ c/D ∼ 10, as
predicted, the photons start ‘running-out’ from behind the
shock front. These photons slightly accelerate the outer
layers, however, the cumulation of energy on the small

mass is already not efficient due to strong radiative losses.
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Velocity – optical depth
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Shock T (m) in SN 1987A
Normal opacity
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SN87A Luminosity and Tobs
Nf = 200, λmin = 0.01
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Shock Luminosity in SNe II

Shocks:
Different
radii at
shock-

breakout
epoch
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Effective Temperature in SN II

lg
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Velocity, Eulerian
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Density as a function of radius

Due to
inefficient
acceler-
ation a
density
peak is
formed
in outer
layers.
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Long Living Dense shells-1
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Long Living Dense shells-2
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Long Living Dense shells-3
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Long Living Dense shells-4
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How to compute radiative shocks?
Comoving frame transfer For arbitrary Lorentz-factor γ (with β = u/c) Eq.

(95.9) in (Mihalas & Mihalas 1984):

γ

c
(1 + βµ)

∂I(µ, ν)

∂t
+ γ(µ + β)

∂I(µ, ν)

∂r
+

+γ(1 − µ2)
[ (1 + βµ)

r
−

γ2

c
(1 + βµ)

∂β

∂t
− γ2(µ + β)

∂β

∂r

]∂I(µ, ν)

∂µ
−

−γ
[β(1 − µ2)

r
+

γ2

c
(1 + βµ)

∂β

∂t
+ γ2µ(µ + β)

∂β

∂r

]

ν
∂I(µ, ν)

∂ν
+

+3γ
[β(1 − µ2)

r
+

γ2µ

c
(1 + βµ)

∂β

∂t
+ γ2µ(µ + β)

∂β

∂r

]

I(µ, ν) =

= η(ν) − χ(ν)I(µ, ν) . (1)

Here η - emission coefficient, χ - exctinction coefficient
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STELLA vs RADA for SNIb/c

We used two algorithms: STELLA

and RADA
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Two radiation hydro codes
STatic Eddington-factor Low-velocity Limit Approximation

STELLA (solid) vs RADA (dotted) for SN1987A
A.Tolstov: RADA – fully Relativistic rADiation transfer

Approximation

Dashed line represents RADA results in observer’s frame with light-travel-time correction.
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Flash at Ib shock breakout
Notice rings due to light-travel time delay:
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‘Visible’ disk of SN 2006gy
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What is T of matter and radiation?
It is a Very Important Question.

Old simulations predicted a very hard X-ray spectrum for
large stars like Red Supergiants and SN 1987A at

shock-breakout.
We predict (with STELLA and RADA) rather soft spectra.

Numerically this was already studied by Weaver (1976) but
for higher density. He never gets those high T shocks. His

work is virtually ignored by the SN community. He was
crticized for assuming equilibrium diffusion, but he had

reasons.

EXUL14Jun12-Prosper – p. 39



Luminosity and T : "X2" run
Nf = 200, λmin = 0.01
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Now spectra νFν: "X2" run
Nf = 200, λmin = 0.01
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SN Ib s1b7a run: T (m)

Nf = 200, λmin = 0.001; Peak T at τ ∼ 200, 50, 4, 1, 0
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Weak absorption α = 10−6σ changes T

Nf = 200, λmin = 0.001; Peak T at τ ∼ 200, 50, 4, 0.5
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Direct observations of shock-breakouts

SN factory NGC2770
SN2008D shock-breakout caught by A.Soderberg et al.; LC

Modjaz et al. (2008); image 12 Jan 2008

EXUL14Jun12-Prosper – p. 44



XRT 080109/SN 2008D
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SN 2008D and other SNIb/c

10
−1

10
0

10
1

10
2

−20

−19

−18

−17

−16

−15

−14

−13

Time since explosion  (d)

M
bo

l  (
m

ag
)

2008D
1998bw
2006aj
1994I
2002ap

56Ni
56Ni+56Co

EXUL14Jun12-Prosper – p. 46



XRF080109, no shock breakout?

Li-Xin Li MNRAS 388(2008)603
A Two-temperature black-body

spectrum
Claims Rph too small.
Actually, No Problem!
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Two-temperature spectrum
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Spectra νFν, s1b7a α = 10−6σ run
Nf = 200, λmin = 0.001
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SN II shocks observed
Observations Gezari ea’08, Schawinski ea’08, simulations Tominaga ea’09

Observed flash and STELLA
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SN II shock spectrum
Observed spectrum and STELLA

1037

1038

1039

1040

1041

1042

 0  2000  4000  6000  8000

Lu
m

in
os

ity
 L

λ 
[e

rg
 s

−
1  Å

−
1 ]

Wavelengh (rest frame) [Å]

FUV
NUV

g
r i

z

t=0day

10days

20days
50days

90days

0.5days

2days

1039

1040

1041

1042

 0  1000  2000

FUV NUV
t=0day

0.5days

2days

0

0.5

1

EXUL14Jun12-Prosper – p. 51



Circumstellar matter

The main puzzle for

XRF080109-SN2008D is its long duration

(for a compact preSN Ib/c).

Explained by a rather dense wind, a

circumstellar cloud.

This may be a general feature for some of

the Most Luminous Supernovae on

much larger and longer scale.
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SN 2006gy

Ofek et al.
2007, ApJL,

astro-
ph/0612408)

Smith et al.
2007, Sep. 10

ApJ, astro-
ph/0612617)
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Brightest. Supernova. Ever
by N.Smith
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It was Most Luminous SN ever
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Extremely bright Type IIn SNe

V-band
(Drake et al. 2010)
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Luminous SN: too many photons?
Now we know a few other SNe with peak luminosity even

higher than SN 2006gy.

Total light 1051 ergs: 2 orders of
mag higher than normal core

collapsing SN and 1 order more
than brightest thermonuclear SN

To explain this light we inevitably involve long-living radiative
shocks.
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SN IIn structure, Chugai, SB ea’04

(photosphere)
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Shocks in SNe IIn

A long liv-
ing shock:
an example
for SN1994w
of type IIn.
Density as a
function of the
radius r in two
models at day
30. The struc-
ture tends to
an isothermal
shock wave.
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Four kinds of deaths

With some uncertainty about exact demarcations, one can 
delineate four kinds of deaths for non-rotating helium stars.
(For rotation decrease main sequence mass 10 - 20%)

He Core            Main Seq. Mass     Supernova Mechanism

  

2 d M d40 10d M d95 Fe core collapse to neutron star

                                                            or a black hole

40d M d60 95d M d130     Pulsational pair instabilit y followed

                                                           by Fe core collapse

60d M d137 130d M d260 Pair instabilit y supernova

M t137 M t260 Black hole. Possible GRB
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Very Massive Stars

approximate

Eexpl
56Ni

Fe-richFe-poor

Heger and Woosley (2002)
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Bolometric for ed250 (2001)

� 

Re  = 1.3 u 1014 cm;    M
He

 = 127 M e

M(56Ni) = 38.9 M e

KE
f
 = 86 u   1051 erg

Calculations by 
Sergei Blinnikov

Brighter still 
are the bigger
explosions
that make lots
of 56Ni
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UBVR for ed250 and SN06gy

EXUL14Jun12-Prosper – p. 63



Kasen,Woosley,Heger 2011
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Visibility at large z
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Woosley, Blinnikov, Heger, s103

Pulsational pair instability may give the Most Luminous Supernovae!
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Two mass ejections

EXUL14Jun12-Prosper – p. 67



SN-repeaters
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Several ejections are possible
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Light curve for SN2006gy
from Woosley, SB, Heger (2007)
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Stella: LCs for SN2006gy
new runs
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Hydro structure 60 d
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60 d, mass coordinate
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‘Visible’ disk of SN 2006gy
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‘Visible’ disk of SN 2006gy c
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Next is partly based on arXiv:1009.4353 and inspired by
Chris Fryer’s work on shocks in C/O winds
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H-poor superluminous SNe
Quimby et al. 2011
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Very bright Type Ib SNe with narrow lines
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Type Ibn, still rather
weak compared to
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notice SN1999E of
type IIn

Quasi-bolometric
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(Pastorello et al.
2008)
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Compare SN1999E with brighter SNeIIn

V-band
(Drake et al. 2010)
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Windy models for core collapse SNe

Ofek et al. 2010
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Our synthetic models for type Ic SNe

Ejecta: polytropic mass distribution;
Wind: ρ ∼ r−p

Composition: uniform for most of models (always uniform
for the wind):
0.5 C + 0.5 O + 2% heavier elements of Solar abundance;
OR He + 2% Z
as a rule no 56Ni – to check the influence of the pure shock

as a rule: velocity in the “wind”: u = 0, but some runs are
done for high u
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Initial models
Samples of the density distribution
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Initial models
Samples of the density distribution
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Windy models for type Ic SNe
all masses M and radii R are in solar units

Model Mej Rej MNi p Mw Rw E, foe

out6esa 10 9.1 · 10
3 0 0 4.15 10

5 1.5

out7p3 10 6.3 · 103 0 3 3.3 105 1.5

out8p3 10 5.7 · 10
3 0 3 6.8 10

5 1.5

out9p3 1.7 5 0 3 9.8 1.2 · 10
5 1.5; 3

out10p2 2 10 0 2 4.5 1.3 · 105 3

out11p2 10 7.4 · 10
3 0 2 4 10

5 3

out12p3 2 9 0 3 0.45 1.2 · 10
5 3

out13p3 2 9 0 3 0.52 1.3 · 106 3

out14p2 1 10 0 2 4.5 1.2 · 10
5 3

out15p25 1 9 0 2.5 2.9 1.2 · 105 3

and others.....
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Light curves for different wind structure

p = 2.5,Mw = 2.9M⊙ p = 2,Mw = 3.5M⊙
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LCs for different explosion energies

p = 1.8,Mw = 4.8M⊙
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CO vs. He wind

CO wind
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CO vs. He wind

Model with He-wind is more symmetric around maximum
light
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STELLA vs. RADA (colored)
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56Ni vs. Shock wave heating

no 56Ni
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56Ni vs. Shock wave heating

M(56Ni) = 1M⊙ in the ejecta
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56Ni vs. Shock wave heating
2 previous plots combined

M(56Ni) = 1M⊙ added to the ejecta
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Models for SN2010gx
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PTF10cwr=SN2010gx absolute u

ρw ∝ r−2, E = 3 Bethe
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PTF10cwr=SN2010gx, double explosion

Fast moving “wind” ρw ∝ r−1.8, E = 2 + 2 Bethe
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Distance Ladder - 1
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Distance Ladder - 2
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Basics for Cosmography
Photometric distance:

d2ph =
L(emitted, ergs/s)

4πF (observed, ergs/s/cm2)

Dependence on redshift z

dph(z)(Ωm,ΩDE , w(z))|theory

is determined by cosmology. Comparison with the

dph(z)(observed)

allows one to find Ωm,ΩDE , w(z), etc.

EXUL14Jun12-Prosper – p. 98



Expanding Photosphere Method (EPM)

Cf. Baade(1926)-Wesselink(1946) method for Cepheids .
Measuring color and flux at two different times, t1 and t2,
one finds the ratio of the star’s radii, R2/R1 (or from
interferometry).
Using weak lines which are believed to be formed near the
photosphere one can measure the photospheric speed vph.

Then
∫ t2
t1

vphdt would give ∆Rph = R2 −R1.
Knowing R2/R1 and R2 −R1, it is easy to solve for the radii.
The ratio of fluxes gives

d2

R2
=

Fν(emitted)

Fν(observed)
,

hence the distance d.
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Distance from EPM
Now the distance d to the supernova is

d = Rph

√

Fν(model)

Fν(observed)

if a reliable model flux Fν(model) at the SN

photosphere is compared with the

detected flux Fν(observed).
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Observed R(t) of SN2006gy
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New DSM for SNe IIn
Measure narrow line components to estimate the
properties of CS envelope (may be done crudely).

Measure wide line components to find the photospheric
speed vph (as accurately as possible).

Build a best fitting model for broad band photometry
and the speed vph.
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New DSM for SNe IIn
Although the “Hubble”-law v = r/t is not applicable,
vph now measures true velocity of the photospheric
radius (not only the matter flow speed, as in type II-P).

Now the original Baade’s idea works for measuring the
radius by integrating vph (of course, with due account
of scattering, limb darkening etc in a time-dependent
SEAM). This must be used when iterating the best
fitting model.

The observed flux then gives the distance.
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MC probable d to SN 2006gy
for T = 9 × 103 K at day 80

H0 ≈ 78 ± 15 km/s/Mpc
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η Carinae: Multi-D is a must
for next steps in theoretical modeling
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A. J. van Marle et al. MN 2010

23 days
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87 days
EXUL14Jun12-Prosper – p. 107



Summary on SN IIn in cosmology
Radiating shocks are most probable sources of light in
most luminous supernovae of type IIn like SN2006gy

Most luminous SN IIn events may be observed at high z
[for years due to (1 + z)] and may be useful as direct,
primary, distance indicators in cosmology

The new DSM is based on original Baade idea which
really works now
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Conclusions-1
The shock wave which runs through rather dense
matter surrounding an exploding star can produce
enough light to explain very luminous SN events. No
56Ni is needed in this case to explain the light curve
near maximum light (some amount may be needed to
explain light curve tails).
We need the explosion energy of only 2-4 Bethe for the
shell with M = 3 − 6M⊙ and R . 1016cm. NARROW
LINES MAY NOT BE PRODUCED!
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Conclusions-2
Questions on the latest phases of star evolution arise:

Is it possible to form so big and dense envelopes?
And how?
Time scale for such a formation
How far can the envelope extend?
Density and temperature profiles inside the envelope
right before the explosion

Question to observations: try to find traces of such
shells for bright explosions.
(There are spectral evidence of circumstellar shells for
type IIn and Ibn SNe. Is it possible to find C–O
envelopes as well?)
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Conclusions-3
Many technical problems in light curve calculations:

line opacities;
dimensionality: 3D is preferable, since the envelope
can most probably be clumpy;
NLTE spectra

EXUL14Jun12-Prosper – p. 111



Acknowledgements
Our work is supported by Grants of the Government of the
Russian Federation 11.G34.31.0047, RFBR 10-02-00249,
10-02-01398, RF Sci. School 3458.2010.2, 3899.2010.2, by
a grant IZ73Z0-128180/1 of the Swiss National Science
Foundation (SCOPES), and in Germany by MPA guest
program. This research has been partly done at IPMU,
Tokyo University, and supported in part by World Premier
International Research Center Initiative, MEXT, Japan

EXUL14Jun12-Prosper – p. 112


	EXUL Workshop, 14 Jun, 2012
	Supernova SN1994D in NGC4526
	SN~2006gy
	SNR Tycho in X-rays (Chandra)
	Supernovae: order of events
	Supernovae: order of events
	Supernovae: order of events
	Supernovae: order of events
	Supernovae: order of events
	Supernovae: order of events

	Double explosion: an old idea
	Another old idea (1984)
	First messengers of explosions
	First messengers of explosions
	First messengers of explosions
	First messengers of explosions

	SN classification
	Extremely bright Type IIn SNe
	H-poor superluminous SNe
	Relation to GRBs & Early Universe
	Radiative shocks
	Zeldovich shock classification
	Supercritical Shock Waves
	Radiation Dominated Shocks
	Viscous jump disappears
	No jump for large $�oldsymbol { P_r/P_g}$
	Shocks inside SNe, e.g., SN~1987A
	Shocks: entropy source for SN~II
	End of shock acceleration
	Velocity -- optical depth
	Shock $�oldsymbol {T(m)}
$ in SN~1987A
	SN87A Luminosity and $�oldsymbol {T_{
m obs}} $
	Shock Luminosity in SNe~II
	Effective Temperature in SN~II
	Velocity, Eulerian
	Density as a function of radius
	Long Living Dense shells-1
	Long Living Dense shells-2
	Long Living Dense shells-3
	Long Living Dense shells-4
	How to compute radiative shocks?
	STELLA vs RADA for SNIb/c
	Two radiation hydro codes
	Flash at Ib shock breakout
	`Visible' disk of SN~2006gy
	What is $�oldsymbol T$ of matter and radiation?
	Luminosity and $�oldsymbol T$: "X2" run
	Now spectra $�oldsymbol { 
u F_
u }$: "X2" run
	SN~Ib s1b7a run: $�oldsymbol { T(m)}$
	large Weak absorption $�oldsymbol { alpha =10^{-6}sigma }$ changes $�oldsymbol { T}$
	large Direct observations of shock-breakouts
	XRT~080109/SN~2008D
	SN~2008D and other SNIb/c
	XRF080109, no shock breakout?
	Two-temperature spectrum
	Spectra $�oldsymbol { 
u F_
u }$, s1b7a $�oldsymbol { alpha =10^{-6}sigma }$ run
	SN~II shocks observed
	SN~II shock spectrum
	 Circumstellar matter 
	SN~2006gy
	Brightest. Supernova. Ever
	It was Most Luminous SN ever
	Extremely bright Type IIn SNe
	Luminous SN: too many photons?
	SN~IIn structure, Chugai, SB ea'04
	Shocks in SNe~IIn
	Four kinds of deaths
	Very Massive Stars
	Bolometric for ed250 (2001)
	UBVR for ed250 and SN06gy
	Kasen,Woosley,Heger 2011
	Visibility at large $�oldsymbol z$
	Woosley, Blinnikov, Heger, s103
	Two mass ejections
	SN-repeaters
	Several ejections are possible
	Light curve for SN2006gy
	Stella: LCs for SN2006gy
	Hydro structure 60 d
	60 d, mass coordinate
	`Visible' disk of SN~2006gy
	`Visible' disk of SN~2006gy c
	H-poor superluminous SNe
	large Very bright Type Ib SNe with narrow lines
	large Compare SN1999E with brighter SNeIIn
	
ormalsize Windy models for core collapse SNe
	large Our synthetic models for type Ic SNe
	Initial models
	Initial models
	Windy models for type Ic SNe
	large Light curves for different wind structure
	large LCs for different explosion energies
	CO vs. He wind
	CO vs. He wind
	STELLA vs. RADA (colored)
	$�oldsymbol { ^{56}}$Ni vs. Shock wave heating
	$�oldsymbol {^{56}}$Ni vs. Shock wave heating
	$^{56}$Ni vs. Shock wave heating
	Models for SN2010gx
	PTF10cwr=SN2010gx absolute $�oldsymbol u$
	large PTF10cwr=SN2010gx, double explosion
	Distance Ladder - 1
	Distance Ladder - 2
	Basics for Cosmography
	large Expanding Photosphere Method (EPM)
	Distance from EPM
	Observed $R(t)$
of SN2006gy
	New DSM for SNe~IIn
	New DSM for SNe~IIn
	MC probable $�oldsymbol { d}$ to SN~2006gy
	$eta $ Carinae: Multi-D is a must 
	A. J. van Marle et al. MN 2010
	A. J. van Marle et al. MN 2010
	Summary on SN~IIn in cosmology
	Conclusions-1
	Conclusions-2
	Conclusions-3
	Acknowledgements

